DEPARTMENT OF PUBLIC WORKS **ENGINEERING DIVISION** #### **MEMORANDUM** TO: Construction Commission **THRU:** Joe Dulin, Community Development Director **FROM:** Julie Schmidt, PE, In-House Consultant, City of Peoria Andrea Klopfenstein, PE, Deputy Director – City Engineer, City of Peoria **DATE:** November 9, 2021 **RE:** Request for Variance from Floodplain Ordinance The City received a variance request for 2322 S Darst Street, which is located within the levee surrounding the Greater Peoria Sanitary District's (GPSD's) facility. The levee is part of the USACE PL 84-99 program, but it has not been certified by FEMA; therefore, it is still considered to be in the floodplain. GPSD is currently working with State and Federal agencies to obtain FEMA certification. The certification process identified several improvements that could make the levee perform better and require less maintenance. GPSD obtained a Conditional Letter of Map Revision (CLOMR) from FEMA, which confirms that these improvements would meet Federal regulations to revise the flood map showing that the area inside the levee is not in the floodplain. One of the improvements identified is to remove an existing maintenance building which is located in a low area that needs to be raised approximately eight feet to increase slope stability of the levee. Due to the nature of GPSD's work and the public benefit of their service, a new maintenance building needs to be constructed before the existing one is removed. Since the levee has not been certified, the proposed building will be located in the floodplain. Site constraints do not allow the building to be constructed above the flood protection elevation (FPE), so they are requesting a variance for it to be constructed below the FPE. Once FEMA's certification process is complete, the area inside the levee will be removed from the floodplain, and the building will no longer require floodproofing measures. Public Works staff recommends approval of the variance from the floodproofing requirements. Additional information is contained in the attached memo from GPSD. Encl. Floodplain Variance Request Memo from GPSD 3505 N Dries Ln Peoria, IL 61604 Phone: (309) 494-8800 FAX: (309) 494-8855 ### **MEMORANDUM** Date: September 21, 2021 To: City of Peoria Public Works Department: Permits Section From: Josh L. Auxier, PE, LEED® AP – Greater Peoria Sanitary District Subject: Follow Up to Floodplain Development Permit Request for Clarification GPSD Project Number: 2689 – Maintenance Building Relocation Project Distribution: Julie Schmidt, PE - City of Peoria; Andrea Klopfenstein, PE (City Engineer) – City of Peoria; Tim Leach, PE (Director of Planning and Construction), Greater Peoria Sanitary District; Josh Auxier, PE, Greater Peoria Sanitary District; File This memorandum is written to provide commentary on pertinent aspects of the Project regarding evaluation of applicable permit criteria and to aid the Reviewer in their evaluation of the enclosed supporting submittal documentation, to formally request a variance in accordance with Section 12-9 of the Peoria Illinois Code of Ordinances, and to continue the dialogue on this important project that began on July 6, 2021. ## **Background and Project History** The District's levee system is currently a Federally recognized levee system and is part of the USACE PL 84-99 program; however, it has never been FEMA certified. To remedy this, the District has been working with State and Federal Agencies towards said FEMA certification of the District's levee system and the corresponding Letter of (Flood) Map Revision (LOMR) to formally remove the District's wastewater treatment plant from the mapped floodplain/floodway. Through that process the District requested and obtained a Conditional Letter of Map Revision (CLOMR) from FEMA, which essentially gives confirmation that should the levee be constructed as designed in the FEMA CLOMR submittal, FEMA found that the work would meet Federal Requirements and could then revise the existing flood map accordingly. ## **MEMORANDUM** Post receipt of the CLOMR, the District coordinated with USACE regarding inclusion of the District's levee system in the Federal 205 program, which would have allowed for a cost share with the Federal government for the levee system given the critical importance of the infrastructure being protected by the levee. Ultimately, that process never came to fruition, but during engineering coordination with USACE several additional improvement methodologies to the levee were discussed that could reduce maintenance to the levee, provide better construction economics, and require less mechanical equipment to maintain the levee in good working order. Based on this the District has been working on revising the CLOMR to incorporate these revised plan details. One of the most important revisions consists of eliminating any low areas within the boundary of the existing levee system. In order to do this, the existing maintenance building must be demolished and the area raised approximately eight feet. It is this need that brings the requirement for the floodplain development permit. The District has been in coordination with Farnsworth Group to develop plans for a new maintenance building to replace the existing building to be demolished as part of the work with FEMA. The new building will be placed on higher ground (i.e. higher than the minimum design elevation that needs to be filled as part of the levee design currently under review at FEMA) within the existing levee system, but lower than the prescribed flood protection elevation (FPE). That said, even though the existing levee system protects the District's buildings and infrastructure from floods, the area is currently mapped as floodplain on the effective flood maps. Thus, we are requesting a Floodplain Development Permit be issued for this Project. ## **MEMORANDUM** #### **Code Review and Permit Justifications** In regards to the floodplain requirements, City Code Chapter 12 requires that the District obtain a development permit for work in the floodplain. Further, the chapter defines the Base Flood Elevations (BFE) as those provided by FEMA contained in the Flood Insurance Study dated August of 1979 and Flood Protection Elevation (FPE) as the BFE plus 2.0 feet for all areas outside the Riverfront Development area. The scope of work for this Project only includes work to be performed outside of the Riverfront Development area and within the flood fringe (area between the regulatory Floodway and regulatory Floodplain) and not in the floodway. Thus section 12-6 (1) is not applicable. Section 12-6 (2) is not applicable because (a) the work is not located within a floodway (or a SFHA where a floodway has not been designed) and therefore not subject to review by IDNR, (b) does not meet one of the listed exemptions, and (c) since it is not contained in the floodway and the floodway is defined as the limit on which further development may cause an increase in the base flood of more than 0.1 foot for the hydraulic reach of the stream or river, the proposed improvements would not (when combined with other development meeting local and State regulations) contribute to an unaccounted for increase (i.e. greater than 0.1 foot) in the base flood elevations for the hydraulic reach of the stream or river. Additionally, since the proposed building would be contained within the existing levee system any space occupied by the proposed building was never available for floodplain storage due to the presence of the existing levee system. This point spurred some confusion during our conference call held on September 10, 2021 and as a follow up to that conversation the District has enclosed Exhibit A, which shows the existing levee flood protection heights as color bands of the bare earth elevations. As shown on the exhibit, elevations from 0.5 feet below the BFE to the BFE are shaded in red, elevations from the BFE to 1.0 feet above the BFE are shaded in green, elevations from 1.0 feet above the BFE to 2.0 feet above the BFE are shaded in blue, elevations between 2.0 feet above the BFE and 465.0 are shaded in purple, and elevations outside of the specified ranges are not shaded. This exhibit is included to illustrate the levels of protection from the levee system as it currently exists. The levee currently provides protection from flooding up to the BFE and thus no volume within the levee footprint has been or is available for floodplain storage. Further, the levee provides flood protection to nearly the entire levee (except for the entrance roads and one isolated spot of less than five feet) of 1.0 feet above the BFE. These locations are temporary vertically extended during time of substantial flooding ## **MEMORANDUM** as part of the District's flood fighting program. In addition, approximately eighty percent of the levee is protected to a flood protection level of BFE plus 2.0 feet. Please refer to the Appendix for Exhibit A. Section 12-7 requires that all proposed buildings shall be protected from flood damage by one of the methods outlined in section 12-7 (b). Of the floodproofing methods listed, methods 1 through 3 are not applicable due to site constraints. Method 4 is applicable in spirit as the existing levee system which surrounds the proposed building was designed and built to protect all buildings within the levee limits from flooding to the BFE and to the FPE for the majority of the levee as illustrated on Exhibit A. Section 12-7 (b) (4)(b.) further requires that the floodproofing measure shall be operable without human intervention. While the vertical portion of the levee cannot be temporarily raised to meet the FPE without specific human intervention, the District maintains pump works and open channel outlets (when applicable based upon flood path) to manage all flows directed to the WWTP within the levee. This includes the site storm water system which is
directed through the treatment works hydraulic circuit, and other overland flow through the internal road network to the effluent channel and ultimately to the pump works. These systems have a rated capacity of approximately 230 CFS (one pump in reserve) and a theoretical capacity of approximately 300 CFS. The pumps are maintained in an active running condition at all times when floodwaters encroach upon the levee and do not need specific human intervention to become active upon floodwater entering the levee protection area – as the system is already active. The District also maintains a central backup power system capable of maintaining the power requirements of the entire facility in the event of a power supply disruption. In addition to the specific protection afforded by the levee system and the flow management systems that do not require human intervention, the District has a comprehensive flood fighting plan to mitigate the effects of flooding and potential collateral damage. Refer to the Appendix for GPSD Flood Plan. If the City does not find our system to be sufficient to meet Section 12-7, then the District requests a variance be granted under Section 12-9. ## **MEMORANDUM** #### Information Related to a Request for Variance, if Applicable Response to Section 12-9(1)a. – Development Cannot Be Located Outside of SFHA The District cannot undertake the Project of reconstructing the plant's maintenance facility outside of the SFHA due to the fact that the entire GPSD plant is located within a levee protected portion of the SFHA and for operational requirements must have a secured, onsite maintenance facility. It should be noted that the plant predates both FEMA and the Flood Insurance Act of 1968 by nearly 40 years. Removal of the maintenance facility from plant may result in the inability for GPSD to perform its State and Federally mandated requirements during times of natural disasters and result in environmental impairment to the greater Peoria area. Response to Section 12-9(1)b. – An Exceptional Hardship Will Result of the Variance is not Granted The District is in the process of improving the existing levee system to become FEMA certified and to meet floodplain development criteria for the City. The relocation of the maintenance facility is an integral part of the overall plan currently being reviewed by FEMA – refer to Appendix for FEMA Submittal. Failure to approve the variance will result in the inability for the District to meet FEMA certification standards in an economically feasible way, which will result in placing the sanitary treatment facility for the City of Peoria and other surrounding Communities in jeopardy of destruction due to potential future flooding. Furthermore, removing of the maintenance facility from the plant to an alternate location outside of the SFHA would isolate the facility from the treatment works during times of major flooding and thus limiting the District's ability to maintain the plant at critical times. Response to Section 12-9(1)c. – The Relief Requested is the Minimum Necessary As previously discussed, the District is in the process of improving its levee system which should ultimately remove the entire facility from the SFHA in the future. Moreover, within this submittal the District has demonstrated that it currently provides flood protection for the entire facility up to the BFE and floodwater management beyond that and approaching the FPE. Thus, it is the District's opinion that it is requesting the minimum relief necessary. ## **MEMORANDUM** Response to Section 12-9(1)d. – There Will be No Additional Threat to Public Health or Safety or Creation of a Nuisance As mentioned previously, allowing this Project by granting this request will not create a threat due to flooding since the volume within the levee has not been in the past and is not available now for floodplain storage. In regards to public health and safety, granting this request will contribute to public health and safety as it allows the District to maintain its ability to treat wastewater during times of natural disaster. Likewise, failure to grant this variance may increase the likelihood for treatment equipment failure during times of substantial flooding without the ability to make onsite plant repairs and therefore contributing to an additional threat to public health and environmental calamity. From an alternate view, the District is simply removing the existing maintenance facility that has exceeded its original design life and replacing it with new, modern maintenance building that will meet current building codes (thus improving worker safety) which has the additional benefit of allowing for work to be performed on the existing levee to comply with current FEMA certification standards. This project will have essentially no impact to any person or entity located outside of the existing levee footprint that surrounds the existing treatment plant. Response to Section 12-9(1)e. – There Will be No Additional Public Expense for Flood Protection, Rescue or Relief Operations, Policing or Repair of Roads, Utilities or other Public Facilities No additional public expense for flood protection, rescue or relief operations, policing or repairs of roads, utilities or other public facilities will result from the granting of this request and construction of the proposed maintenance facility. The District understands this to be the case because (1) the District has a comprehensive plan for all stages of flooding and flood mitigation (2) the District is a local government Agency with a dedicated funding stream and trained staff to both maintain their flood mitigation measures and actively perform flood fighting activities as needed, (3) the project location is relatively small and wholly contained within the surrounding wastewater treatment plant and is protected as part of the overall operation, (4) access roads to the new building are existing and part of the District's internal road network and their repair and maintenance are not paid for by City funds, and (5) the creation of the maintenance facility reduces the likelihood of catastrophic damage to District owned utilities and the public facilities. ## **MEMORANDUM** Response to Section 12-9(1)f. – The Provisions of Subsection 12-5(3) are Met The District acknowledges that prior to the issuance of the development permit, the District must first obtain any required State and Federal permits. The District does not believe that any State or Federal permits are required to complete this work as the work to be performed is wholly outside of the regulatory floodway and thus a waterway alteration permit under the Part 3700 rules is not required and Section 404 of the Cleanwater Act does not apply since we are within the limits of a treatment facility authorized by an NPDES permit. Further the location of work is above the ordinary highwater mark/normal pool of the Illinois River. Response to Section 12-9(1)f. – The Provisions of Subsection 12-6(1) are Met Provisions of Subsection 12-6(1) do not apply to this Project as the entire Project limits are located outside of the Regulatory Floodway. Response to Section 12-9(2). – Acknowledgement of Additional Risks to the Development The District recognizes and acknowledges that additional risk exists for developments contained within the floodplain. Specifically the concerns listed in Section 12-9(2) a-c. ## **MEMORANDUM** ## Appendix #### **Appendix Contents** Exhibit A – Existing Levee Flood Protection Exhibit **GPSD Flood Plan** **Excerpts from CLOMR Revision Submittal** EXISTING LEVEE FLOOD PROTECTION PLAN SCALE: 1" = 80' B.F.E. = 458.9* GARAGE RELOCATION GPSD PROJECT 2689 GPSD LEVEE FLOOD PROTECTION EXHIBIT Greater Peoria Sanitary District PROJECT NO. 2689 DRAWING EX A | FLOODING SOURCE | | | FLOODWAY | | | BASE FLOOD
Water Surface Elevation | | | | |-------------------------------|--|--|---|--|---|--|--|--|--| | CROSS SECTION | DISTANCE ¹ | WIDTH 2
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC.) | WITH
FLOODWAY
(NGVD) | WITHOUT
FLOODWAY
(NGVD) | DIFFERENCE | | | | ILLINOIS RIVER | | | | | | | | | | | A B C D E F G H I J K L M N O | 160.00
160.62
160.72
161.60
162.22
162.28
162.80
164.00
165.75
166.00
167.00
169.00
170.00
171.00 | 3954
1420
1207
861
994
1015
2300
6903
6025
4952
5900
5046
8340
10,080
11,754 | 86,774
34,776
33,964
22,050
28,079
26,116
50,733
188,087
166,224
119,214
128,429
97,121
215,811
251,396
287,083 | 1.13
2.82
2.89
4.44
3.49
3.75
1.93
0.49
0.55
0.77
0.71
0.94
0.42
0.36
0.32 | 459.2
459.2
459.2
459.3
459.6
460.0
460.2
460.3
460.3
460.3
460.3
460.4
460.4 | 459.1
459.1
459.1
459.2
459.5
459.9
460.1
460.2
460.2
460.2
460.2
460.2
460.3
460.3 | 0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1 | | | | | | | | | | | | | | ¹MILES ABOVE MOUTH TABLE 2 FEDERAL EMERGENCY MANAGEMENT AGENCY Federal Insurance Administration CITY OF
PEORIA, IL (PEORIA CO.) FLOODWAY DATA ILLINOIS RIVER ²THIS WIDTH EXTENDS BEYOND CORPORATE LIMITS # **Greater Peoria Sanitary District** # **Flood Plan** Adopted: October 2008 Revised: May 2017; July 2019; November 2019; July, 2020; September 2021 ## Contents | Introduction | 3 | |---|---| | Objectives | 3 | | Flood Data | 3 | | Basic Information | 3 | | Flood Scenarios | 3 | | Authority to Activate Plan/Contact Information | 5 | | Operations | 5 | | Ongoing Safety Training | 5 | | Ongoing Monitoring | 6 | | Phased Operations | 6 | | Phase 1 – High Water/Pre-Flooding and Early Flooding (17 – 18 Feet) | 6 | | Phase 2 – Minor Flooding (18 – 22 Feet) | 6 | | Phase 3 – Moderate Flooding (22 – 28 Feet) | 7 | | Phase 4 – Major Flooding (28 – 30 Feet) | 7 | | Phase 5 – Emergency Flooding (>30 Feet) | 8 | | Phase 6 – Recovery | 9 | | Insurance Summary | 9 | #### Introduction The Greater Peoria Sanitary District is located in the floodplain of the Illinois River. The potential for flooding is dependent on the levee constructed, owned and operated by the Sanitary District. Through continuing maintenance and monitoring of the levee, the risk of physical damage to the facilities can be managed. The success of even the best designed and maintained levee system cannot be fully guaranteed during a major flood. A flood of the 100-year magnitude on the Illinois River would be of long duration, possibly resulting in flood water on the system for months. The Corp of Engineers monitors Illinois River stage and models events that may result in floods. This modeling will provide a few days of advance warning of predicted crest elevations. It is likely that much of the earthen levee will be saturated by the time the flood water reaches the system's design level, where it could stay steady with little drop for days. During a flood of this magnitude, success for a system in even the best of conditions would require emergency response to unpredicted problems. If the levee protection is compromised, the facility could experience flood waters very quickly, with limited time to react and the water could be on site for weeks. #### **Objectives** The Sanitary District's primary purpose is to protect the environment from the release of partially or untreated sewage. This Flood Emergency Response Plan is developed to serve as an outline of actions to be taken leading up to and after possible flooding. Through planning, both property and environmental damage can be minimized. This plan will be reviewed and updated as needed. This will help assure that effective action can be taken if needed. #### Flood Data #### **Basic Information** Flood stage on the Illinois River at Peoria is considered to be 18.0 feet, 446.1 feet MSL (NAVD88). The reference point for Illinois River elevation is the Corps of Engineers Grant Street gauge. - Darst Street floods at 26.8 feet. This prohibits vehicular access to the plant. - Can use military truck up to 28' but after that, use boat entry. - The crest of the levee is 33.0 feet. - The 100-year flood level is 32.2 feet. - The highest recorded flood level is 29.35 feet, on April 23, 2013. #### **Flood Scenarios** Treatment Plant operations could be compromised from flooding through a number of scenarios, primarily related to flooding of the Illinois River. One known scenario is related to flooding of Kickapoo Creek. A partial list of the causes is summarized as follows: - Failure of effluent flow control gate. This risk is minimized by regular inspection and operation and by redundant gates SG-19 and SG-76. - Failure of Effluent Pumps and Plant Drainage Pumps. This risk is minimized by redundant equipment, regular exercise programs and on-site standby power. - Breach of the levee. The Treatment Plant is protected by a levee at an elevation greater than a 100-year flood elevation. - On April 18, 2013, at 10:00 P.M. Kickapoo Creek experienced a flash flood that temporarily closed Darst Street. Conditions included area-wide rainfall of 5" to 7" on top of completely saturated ground. The flash flood occurred when the Illinois River was just reaching flood stage and was rising rapidly. Although the flash flood quickly subsided, access to the treatment plant was shut down for several hours. The treatment plant itself was not threatened. Operational issues are impacted at lower river stages, primarily from limited or no vehicular access. This relates to delivery of supplies, personnel access to the plant, and conducting business with the public. Impact on these activities can be predicted and planned in advance to minimize the disruption to business activities. The reference point for Illinois River elevation is the Corps of Engineers Grant Street gauge. | Grant Street
River Gauge | Grant Street
Mean Sea Level
(NAVD 88) | Action or Activity *See Note 1 | |-----------------------------|---|--| | 0.0' | 428.1 | Zero gauge reference elevation. | | 11.6′ | 439.7 | Normal Pool | | 13.9′ | 442.0 | Water elevation outside the levee matches the ground elevation at the Vactor Solids Dump Pad and the Maintenance/Storage Garages. (442.0) No impacts anticipated. | | 18.0' | 446.1 | Flood Stage at Peoria (445.3) | | 20.0′ | 448.1 | At the Galena Rd. Pumping Station, "River Flooding Lag Pump Alarm" needs to be turned to "ON" position. | | 22.7′ | 450.8 | Water elevation outside the levee matches the remaining ground elevations inside the levee. (450.0) No impacts anticipated. | | 23.6′ | 451.7 | At the Galena Rd. Pumping Station, close valve on west-side of the pumping station | | 23.6′ | 451.7 | At the Galena Rd. Pumping Station, to prevent water migration into building, on the door interior, place steel plates and seal using caulking materials. | | 23.8′ | 451.9 | At the Galena Rd. Pumping Station, to maintain pumping cycle times between three to five minutes, begin the adjustment and the monitoring of the valve north of the pumping station. | | 24.3′ | 452.4 | Working Sludge Beds are protected to elevation 453.6. The stated elevation allows 2.0 feet of freeboard. | | 26.3' | 454.4 | Working Sludge Bed levee elevation. (453.6) | | 26.8' | 454.9 | Darst Street floods. | | 30.7′ | 458.8 | Sludge Test Beds are protected to elevation 460.0. The stated elevation allows 2.0 feet of freeboard. | |-------|-------|---| | 31.9′ | 460.0 | Elevation of southern road entrance. (459.2) | | 31.9' | 460.0 | Base Flood Elevation (100-year flood). USACE river profile and effective Flood Insurance Study, between River Mile 160.0 and 160.6. (458.9) | | 32.4′ | 460.5 | Elevation of northern road entrance (459.7) | | 32.5′ | 460.6 | For eminent overtopping, implement Utility Interruption Plan | | 33.0′ | 461.1 | Highest continuous contour on the levee. (460.3) Excluding entrance roadways. | ^{*}Note 1: Depending on the flood event the actual river elevation at the WWTP will be between 6 inches and 13 inches lower than at Grant Street. For the table above the WWTP elevations are assumed to be 9 inches lower than Grant Street during flood stage. #### Authority to Activate Plan/Contact Information The Executive Director has full authority to activate the Plan. In the absence of this person the Director of Operations will be responsible for initiating the Plan. Pertinent Contact Information is as follows: Brian Johnson, Executive Director - (309) 472-8143 James E. Sloan, P.E., Director of Operations - (309) 678-9046 #### **Local Authorities** | Peoria Police Department (Non-emergency) | (309) 673-4521 | |--|---| | Peoria Fire Department (Non-emergency) | (309) 674-3131 | | Peoria Emergency Services & Disaster Agency | (309) 494-8036 | | Peoria County Emergency Services & Disaster Agency | (309) 691-3111 | | R. Jason Marks, Director of Emergency Management & Preparedness, Peoria City/County Health Department, Emergency Management Agency | (309) 679-6020
jmarks@peoriacounty.org | ## **Operations** #### **Ongoing Safety Training** Employees shall be properly trained on an annual basis as to the contents of this Plan and what to do in the event of a flood emergency. The Executive Director's designee for carrying out this Plan safety training is the Director of Administration. #### **Ongoing Monitoring** River levels shall be monitored on a daily basis. The Executive Director's designee for carrying out this Plan is the Director of Operations. A summary of how the daily readings are monitored and reported to the Executive Director is as follows: The Director of Operations, and the Operations Department supervisory staff, monitors the river gauge on a daily basis throughout the year. The first significant gauge forecast is the river predicted to reach 17 feet at Grant Street in Peoria. At 17 feet, SG-19 must be closed and the effluent screw pumps turned on. If the river continues to rise, Operations Department will communicate with the Executive Director, and department directors, to implement the Phased Operations as outlined below. #### **Phased Operations** #### Phase 1 – High Water/Pre-Flooding and Early Flooding (17 – 18 Feet) What to Expect During this Phase: Action Items: The following Actions are to be taken by the corresponding Responsible Person. When complete, the Responsible Person shall notify the corresponding Verification Person | River Gauge | Action | Purpose | Person
Responsible | Verification
Person | |-------------|-------------
---|-------------------------------|---------------------------| | 17.0′ | Close SG-19 | Isolate the effluent channel and prevent cross contamination with the river | Process Control
Supervisor | Director of
Operations | Notes of importance are: • 17.0' is the Action Stage for the river. If the river is predicted to continue to rise above 17.0', then the following actions must be taken. #### Phase 2 – Minor Flooding (18 – 22 Feet) What to Expect During this Phase: Action Items: The following Actions are to be taken by the corresponding Responsible Person. When complete, the Responsible Person shall notify the corresponding Verification Person | River
Gauge | Action | Purpose | Person
Responsible | Verification
Person | |----------------|---|---|------------------------------------|---------------------------| | 18.0′ | Inspect Sanger and
South flap gates | Ensure functioning such that river waters don't flood Riverfront Interceptor | Collection
System
Supervisor | Director of
Operations | | 19.0′ | Close SG-76 | Provide a second layer of flood protection through the levee | Process Control
Supervisor | Director of
Operations | | 20.0′ | At the Galena Rd. Pumping Station, "River Flooding Lag Pump Alarm" needs to be turned to "ON" position. | Notify when the lead pump cannot keep up with pumping increases caused by increased infiltration. | Process Control
Supervisor | Director of
Operations | #### Notes of importance are: - Shutting SG-76 is critical. The river will push SG-19 away from the headwall and the gate will leak as the river continues to rise. Closing SG-76 is pushed closed by the river. Both gates are needed to protect the treatment plant. - The regulator flap gates need to operate to protect the Riverfront Interceptor as the river flooding increases #### Phase 3 – Moderate Flooding (22 – 28 Feet) What to Expect During this Phase: Action Items: The following Actions are to be taken by the corresponding Responsible Person. When complete, the Responsible Person shall notify the corresponding Verification Person | River
Gauge | Action | Purpose | Person
Responsible | Verification
Person | |----------------|---|---|---|--| | 23.3′ | Begin routine seepage
inspection for Vactor
Dump Pad and
Maintenance Garage
Areas | Flooding can occur from water through the ground table. Seepage must be monitored. | Facilities
Supervisor and
P&C staff | Director of Operations and Director of Planning & Construction | | 23.6′ | At the Galena Rd. Pumping Station, close valve on west-side of the pumping station | Protect the pumping station from river inflow from Main R23D009300. | Collection
System
Supervisor | Director of
Operations | | 23.6′ | At the Galena Rd. Pumping Station, to prevent water migration into building, on the door interior, place steel plates and seal using caulking materials. | Protect the pumping station from river flooding. | Facilities
Supervisor | Director of
Operations | | 23.8′ | At the Galena Rd. Pumping Station, to maintain pumping cycle times between three to five minutes, begin the adjustment and the monitoring of the valve north of the pumping station | Pumping Station, to aintain pumping cycle ness between three to ve minutes, begin the adjustment and the onitoring of the valve orth of the pumping | | Director of
Operations | | 25.9' | Begin routine seepage
inspection for all other
areas | Flooding can occur from water through the ground table. Seepage must be monitored | Facilities
Supervisor and
P&C staff | Director of
Operations
and Director
of Planning &
Construction | | 26.0′ | Call Peoria Metro to
secure offsite location
for vehicle parking | If Darst floods, will want to ensure access to parking for staff vehicles and collection system/engineering vehicles | Director of
Planning &
Construction | Executive Director, Director of Operations | |-------|--|--|---|--| | 26.3' | Move equipment from
heavy equipment
building | Working sludge bed will flood | Facilities
Supervisor | Director of
Operations | | 26.8′ | Notify Staff of need to
use military truck to
access plant | Alert employees of change in routine, new procedure, and to dress appropriately | Director of Operations | Executive
Director | | 26.8′ | Move vehicles to Peoria
Metro | Ensures collection system/engineering vehicles are accessible | Director of Planning & Construction | Executive Director, Director of Operations | #### Notes of importance are: - If the forecast is for Moderate Flooding, Operations Staff must make sure chemicals have been delivered. In addition, at a minimum, fuel must be available to run the Solar Turbine generators for 2½ days. This is a volume of 20,000 gallons of diesel fuel. - During moderate flooding, check the condition of the boat, the boat motor and the boat docks. #### Phase 4 – Major Flooding (28 – 30 Feet) What to Expect During this Phase: Action Items: The following Actions are to be taken by the corresponding Responsible Person. When complete, the Responsible Person shall notify the corresponding Verification Person | River
Gauge | Action | Purpose | Person
Responsible | Verification
Person | |----------------|--|--|--|---| | 28.0′ | Notify Staff of need to use boat to access plant | Alert employees of change in routine, new procedure, and to dress appropriately | Director of Operations | Executive
Director | | 29.0′ | Begin planning for records and equipment removal | Should plant flood, District
needs to ensure protection of
records and equipment, such
as computers | Director of
Administration,
Director of
Finance | Executive Director, Director of Operations, Director of Planning & Construction | | 29.0′ | Ensure availability of off-
site command post | Ensure availability of customer service and administrative functions | Director of Administration, Executive Director | All Directors | #### Notes of importance are: • Prior to 28.0', when access is still possible with large trucks, prepare the boat docks and set them in place. #### Phase 5 – Emergency Flooding (>30 Feet) What to Expect During this Phase: Action Items: The following Actions are to be taken by the corresponding Responsible Person. When complete, the Responsible Person shall notify the corresponding Verification Person | River Gauge | Action | Purpose | Person
Responsible | Verification
Person | | |--------------------------|---|--|--|--|--| | 30.0′ | Move essential staff to off-site command post | Ensure availability of customer service and administrative functions | Director of Administration, Executive Director | All Directors,
Board of
Trustees | | | 32.5' (or in discretion) | Cut off power to
WWTP | Prevent live electricity in flood waters | Executive
Director | All Directors,
Board of
Trustees | | #### Notes of importance are: - If a power cut-off is expected, the Solar Turbine generators will need to be in operation and the treatment plant must be disconnected from Ameren. When the levee is being topped, and the treatment plant actually starts to flood, the generators will be shut down and the treatment plant will go dark. This prevents live electricity in the flood waters. - If the levee is being topped and the plant is dark, if at all possible, SG-19 should be opened. SG-76 can be opened after the flood drops below the top of the levee. This will allow the plant to drain by gravity after the flood subsides. #### Phase 6 – Recovery In this phase, floodwaters will crest and start to recede, and response will transition into recovery. Depending on the level of damage, recovery may include: - Initial damage assessment in anticipation of a federal disaster declaration - Deployment of damage assessment teams and FEMA - Coordinate with Jason Marks of Peoria County EMA (contact information is above) - Power to effluent screw pumps to drain plant - Debris removal - Repairs by private property owners - Repairs to District-owned facilities or systems - Road repairs - After-action review and reporting ## **Insurance Summary** The Director of Administration is responsible for ensuring the District maintains adequate flood insurance protection, as directed with policy input from the Board of Trustees. As of the date of this Plan, the following is a summary of existing flood insurance coverage: #### **National Flood Insurance Program (NFIP)** - > \$500,000 for buildings (\$50,000 deductible) and
\$500,000 for contents (\$50,000 deductible) - Ad/Lab building - Electrical building - Operations building - Pump and Blower building - Intermediate Pump Station building - > \$500,000 for buildings (\$1,250 deductible) and \$500,000 for contents (\$1,250 deductible) - Centrifuge building #### **Property Insurance Package** (\$250,000,000 aggregate) - Flood Zones A and V - \$5,000,000 per occurrence (\$500,000 deductible) - Flood Zones Excluding A and V - \$10,000,000 per occurrence (\$100,000 deductible) ## U.S. DEPARTMENT OF HOMELAND SECURITY FEDERAL EMERGENCY MANAGEMENT AGENCY #### **OVERVIEW & CONCURRENCE FORM** O.M.B No. 1660-0016 Expires February 28, 2014 #### PAPERWORK BURDEN DISCLOSURE NOTICE Public reporting burden for this form is estimated to average 1 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing, reviewing, and submitting the form. You are not required to respond to this collection of information unless it displays a valid OMB control number. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden to: Information Collections Management, Department of Homeland Security, Federal Emergency Management Agency, 1800 South Bell Street, Arlington, VA 20958-3005, Paperwork Reduction Project (1660-0016). Submission of the form is required to obtain or retain benefits under the National Flood Insurance Program. Please do not send your completed survey to the above address. #### PRIVACY ACT STATEMENT AUTHORITY: The National Flood Insurance Act of 1968, Public Law 90-448, as amended by the Flood Disaster Protection Act of 1973, Public Law 93-234. PRINCIPAL PURPOSE(S): This information is being collected for the purpose of determining an applicant's eligibility to request changes to National Flood Insurance Program (NFIP) Flood Insurance Rate Maps (FIRM). ROUTINE USE(S): The information on this form may be disclosed as generally permitted under 5 U.S.C § 552a(b) of the Privacy Act of 1974, as amended. This includes using this information as necessary and authorized by the routine uses published in DHS/FEMA/NFIP/LOMA-1 National Flood Insurance Program (NFIP); Letter of Map Amendment (LOMA) February 15, 2006, 71 FR 7990. **DISCLOSURE**: The disclosure of information on this form is voluntary; however, failure to provide the information requested may delay or prevent FEMA from processing a determination regarding a requested change to a (NFIP) Flood Insurance Rate Maps (FIRM). ☑ CLOMR: A letter from DHS-FEMA commenting on whether a proposed project, if built as proposed, would justify a map revision, or #### A. REQUESTED RESPONSE FROM DHS-FEMA | | ☐ LOMR: A letter from DHS-FEMA officially revising the current NFIP map to show the changes to floodplains, regulatory floodway or flood elevations. (See 44 CFR Ch. 1, Parts 60, 65 & 72) | | | | | | | | | | |-----|--|---------------------|-------------------------------|-----------------------------|-----------------|-------------------|-------------|------------------|--|----------------------| | | B. OVERVIEW | | | | | | | | | | | 1. | The | e NFIP map p | anel(s) affected | for all impacted commun | nities is (are) | : | | | | | | Co | mmu | nity No. | Community Na | ame | | | State | Map No. | Panel No. | Effective Date | | Exa | ample | e: 480301
480287 | City of Katy
Harris County | | | | TX
TX | 48473C
48201C | 0005D
0220G | 02/08/83
09/28/90 | | 170 | 536 | | Peoria, City of | | | | IL | N/A | 0020B | 02/01/80 | | 170 | 170536 Peoria, City of IL 17143C 0336A 00/00/00 | | | | | 00/00/00 | | | | | | 2. | | | ce: Illinois River | | ☐ Shallow | v Flooding (e.g., | Zones AO | and AH) | and the second s | | | | | | ☐ Alluvia | | | (Attach Descript | | , | | | | 3. | Pro | ject Name/Ide | entifier: Greater | Peoria Sanitary District (| (GPSD) Leve | e Improvement | & Certifica | ition Project | | | | 4. | FEI | MA zone desi | gnations affecte | d: A13 (0020B), AE (033 | 36A) (choice: | s: A, AH, AO, A | \1-A30, A9 | 9, AE, AR, V, | V1-V30, VE, B, C | C, D, X) | | 5. | Bas | sis for Reques | t and Type of R | evision: | | | | | | | | | a. | The basis fo | or this revision re | equest is (check all that a | apply) | | | | | | | | | ☑ Physical | Change | ☐ Improved Methodol | ogy/Data | Regulatory | / Floodway | Revision | ☐ Base Map Cl | hanges | | | | ☐ Coastal | Analysis | ☐ Hydraulic Analysis | | Hydrologic | : Analysis | | ☐ Corrections | | | | | ☐ Weir-Dar | m Changes | ■ Levee Certification | | ☐ Alluvial Fa | n Analysis | | ☐ Natural Char | nges | | | ☐ New Topographic Data ☐ Other (Attach Description) | | | | | | | | | | This request is for a (check one): proposed hydrology changes (See 44 CFR Ch. 1, Parts 60, 65 & 72). Note: A photograph and narrative description of the area of concern is not required, but is very helpful during review. | b. The area of revision encor | npasses the following structures | (check | all that apply) | | | | | | |---|--|-----------------------|--|--------------------------------|-----------|--------------------------|----------------------------|--| | Structures: | Channelization | ⊠ Leve | e/Floodwall | ☐ Bridge | e/Culvert | t | | | | | ☐ Dam | ☐ Fill | | ☐ Other | (Attach | Description | on) | | | 6. 🛮 Documentation of ESA compliance is submitted (required to initiate CLOMR review). Please refer to the instructions for more information. | | | | | | | | | | | С | . REVI | EW FEE | | | | | | | Has the review fee for the appropriat | e request category been include | ed? | Į. | ☑ Yes | | Fee amo | unt: \$ <u>7,250 +</u> | | | | | | [| ☐ No, Atta | ach Expl | anation | | | | Please see the DHS-FEMA Web sit | te at http://www.fema.gov/plan/p | revent/fl | nm/frm_fees.shtm | for Fee Ar | nounts | and Exem | nptions. | | | | D | . SIGN | IATURE | | | | | | | All documents submitted in support of fine or imprisonment under Title 18 of | of this request are correct to the
of the United States Code, Section | best of n
on 1001. | ny knowledge. I u | nderstand | that any | false state | ement may be punishable by | | | Name: Brian Johnson | | | Company: Grea | iter Peoria | Sanitary | District | | | | Mailing Address:
2322 S. Darst Street | | | Daytime Telepho | one
No.: 3 | 09-637-3 | 3511 | Fax No.: 309-637-6614 | | | Peoria, IL 61607 | | | E-Mail Address: bjohnson@gpsd.org | | | | | | | Signature of Requester (required) | | | | Date: | 4/5/ | 2021 | | | | As the community official responsible for floodplain management, I hereby acknowledge that we have received and reviewed this Letter of Map Revision (LOMR) or conditional LOMR request. Based upon the community's review, we find the completed or proposed project meets or is designed to meet all of the community floodplain management requirements, including the requirements for when fill is placed in the regulatory floodway, and that all necessary Federal, State, and local permits have been, or in the case of a conditional LOMR, will be obtained. For Conditional LOMR requests, the applicant has documented Endangered Species Act (ESA) compliance to FEMA prior to FEMA's review of the Conditional LOMR application. For LOMR requests, I acknowledge that compliance with Sections 9 and 10 of the ESA has been achieved independently of FEMA's process. For actions authorized, funded, or being carried out by Federal or State agencies, documentation from the agency showing its compliance with Section 7(a)(2) of the ESA will be submitted. In addition, we have determined that the land and any existing or proposed structures to be removed from the SFHA are or will be reasonably safe from flooding as defined in 44CFR 65.2(c), and that we have available upon request by FEMA, all analyses and | | | | | | | | | | Community Official's Name and Title | : Bill Lewis, Deputy Director of B | Engineer | ring | Community Name: City of Peoria | | | Peoria | | | Mailing Address:
Public Works Department | | | Daytime Telepho | one No.: 3 | 09-494-8 | 8800 | Fax No.: 309-494-8655 | | | 3505 N Dries Lane, Peoria, IL 61604 | -1210 | | E-Mail Address: | blewis@p | eoriago\ | v.org | | | | Community Official's Signature (requ | ired): Bullo | | | Date: 3/26/21 | | | | | | CERTIFICAT | ION BY REGISTERED PRO | FESSI | ONAL ENGINE | R AND/ | OR LAN | ID SURV | <u>'EYOR</u> | | | This certification is to be signed and selevation information data, hydrologic described in the MT-2 Forms Instruct any false statement may be punishab | and hydraulic analysis, and angions. All documents submitted i | y other s
in suppo | supporting informa
rt of this request a | tion as per
re correct | NFIP re | gulations
est of my k | paragraph 65.2(b) and as | | | Certifier's Name: Matthew A. Zick, P | .E. | | License No.: 06 | 2-055034 | | Expira | ation Date: 11/30/2021 | | | Company Name: Crawford, Murphy, | | | Telephone No.: | 309-680-1 | 304 | Fax N | o.: 309-637-1891 | | | Signature: Date: 3-26-7 E-Mail Address: mzick@cmtengr.com | | | | | | | | | | Ensure the forms that are appropriate to your revision | n request are included in your submittal. | 3055-4-197777171717171 | |--|---|--| | Form Name and (Number) | Required if | State Land Constitution of the | | □ Riverine Hydrology and Hydraulics Form (Form 2) | New or revised discharges or water-surface elevations | 1 002-00000 P | | ☑ Riverine Structures Form (Form 3) | Channel is modified, addition/revision of bridge/culverts, addition/revision of levee/floodwall, addition/revision of dam | PROFESSIONAL | | ☐ Coastal Analysis Form (Form 4) | New or revised coastal elevations | ENGINEER OF | | ☐ Coastal Structures Form (Form 5) | Addition/revision of coastal structure | Sear (Optional) | | ☐ Alluvial Fan Flooding Form (Form 6) | Flood control measures on alluvial fans | Julian Marian | ## U.S. DEPARTMENT OF HOMELAND SECURITY FEDERAL EMERGENCY MANAGEMENT AGENCY RIVERINE HYDROLOGY & HYDRAULICS FORM O.M.B No. 1660-0016 Expires February 28, 2014 #### PAPERWORK BURDEN DISCLOSURE NOTICE Public reporting burden for this form is estimated to average 3.5 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing, reviewing, and submitting the form. You are not required to respond to this collection of information unless a valid OMB control number appears in the upper right corner of this form. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden to: Information Collections Management, Department of Homeland Security, Federal Emergency Management Agency, 1800 South Bell Street, Arlington VA 20958-3005, Paperwork Reduction Project (1660-0016). Submission of the form is required to obtain or retain benefits under the National Flood Insurance Program. **Please do not send your completed survey to the above address.** #### **PRIVACY ACT STATEMENT** **AUTHORITY:** The National Flood Insurance Act of 1968, Public Law 90-448, as amended by the Flood Disaster Protection Act of 1973, Public Law 93-234. **PRINCIPAL PURPOSE(S):** This information is being collected for the purpose of determining an applicant's eligibility to request changes to National Flood Insurance Program (NFIP) Flood Insurance Rate Maps (FIRM). **ROUTINE USE(S):** The information on this form may be disclosed as generally permitted under 5 U.S.C § 552a(b) of the Privacy Act of 1974, as amended. This includes using this information as necessary and authorized by the routine uses published in DHS/FEMA/NFIP/LOMA-1 National Flood Insurance Program (NFIP); Letter of Map Amendment (LOMA) February 15, 2006, 71 FR 7990. **DISCLOSURE:** The disclosure of information on this form is voluntary; however, failure to provide the information requested may delay or prevent FEMA from processing a determination regarding a requested change to a NFIP Flood Insurance Rate Maps (FIRM). | Flo | Flooding Source: Illinois River | | | | | | | | | |-----|---|-------------------------------------|---------------|-------------------------|----------------------------------|--|--|--|--| | No | te: Fill out one form for each flooding source s | studied | | | | | | | | | | A. HYDROLOGY | | | | | | | | | | 1. | Reason for New Hydrologic Analysis (check | all that apply) | | | | | | | | | | Not revised (skip to section B) | ☐ No existing analysis | | ☐ Improved data | | | | | | | | ☐ Alternative methodology | ☐ Proposed Conditions (CLON | MR) | ☐ Changed physic | al condition of watershed | | | | | | 2. | Comparison of Representative 1%-Annual-Ch | nance Discharges | | | | | | | | | | Location Drain | nage Area (Sq. Mi.) | Effective/I | FIS (cfs) | Revised (cfs) | 3. | Methodology for New Hydrologic Analysis (cl | heck all that apply) | | | | | | | | | | ☐ Statistical Analysis of Gage Records | ☐ Precipitation/Runoff Model | → Specify M | lodel: | | | | | | | | ☐ Regional Regression Equations | ☐ Other (please attach descrip | tion) | | | | | | | | | Please enclose all relevant models in digital for new analysis. | ormat, maps, computations (includ | ling computa | ation of parameters), a | and documentation to support the | | | | | | 4. | Review/Approval of Analysis | | | | | | | | | | | If your community requires a regional, state, or | or federal agency to review the hy- | drologic anal | lysis, please attach ev | idence of approval/review. | | | | | | 5. | Impacts of Sediment Transport on Hydrology | | | | | | | | | | | Is the hydrology for the revised flooding source | ce(s) affected by sediment transpo | ort? 🗌 Ye | s 🗌 No | | | | | | | | If yes, then fill out Section F (Sediment Trans | port) of Form 3. If No, then attach | your explan | nation | | | | | | | | | | | | | | | | | #### **B. HYDRAULICS** | Reach to be Revised | | | | | | | | | |--
---------------------------------|----------------------------------|---|---------------------------------|-----------------|--|--|--| | | Descript | ross Section | ss Section Water-Surface Elevations (ft | | | | | | | | | | | | roposed/Revised | | | | | Downstream Limit* | Illinois River | <u>16</u> | 0.17 <u>459</u> | <u>.09 45</u> | 9.09 | | | | | Upstream Limit* | Illinois River | <u>15</u> | 9.95 459 | 1.08 45 | 9.08 | | | | | *Proposed/Revised elevations m | ust tie-into the Effective e | levations within 0.5 foot | at the downstream and u | pstream limits of revisi | on. | | | | | 2. Hydraulic Method/Model Use | d: HEC-RAS | | | | | | | | | | | | | | | | | | | 3. Pre-Submittal Review of Hyd | raulic Models* | | | | | | | | | DHS-FEMA has developed two respectively. We recommend 4. | | | | | draulic models, | | | | | Models Submitted | <u>Natura</u> | <u>l Run</u> | Floody | <u>Datum</u> | | | | | | Duplicate Effective Model* | File Name:
GPSDduplEffective | Plan Name:
DuplEffectiveModel | File Name:
GPSDFloodCorModel | Plan Name:
CorEffectiveModel | NGVD 29 | | | | | Corrected Effective Model* | File Name:
GPSDCorrEffective | Plan Name:
CorrEffectiveModel | File Name:
GPSDFloodCorModel | Plan Name:
CorEffectiveModel | NGVD 29 | | | | | Existing or Pre-Project
Conditions Model | File Name:
GPSD No Levee | Plan Name:
NO LEVEE | File Name: | Plan Name: | NGVD 29 | | | | | Revised or Post-Project
Conditions Model | File Name:
GPSD Proposed | Plan Name:
Plan 04 | File Name:
GPSDFloodAnalysis | Plan Name:
FloodwayTrial | NGVD 29 | | | | | Other - (attach description) | Plan Name: | | | | | | | | | * For details, refer to the corresp | onding section of the instr | uctions. | | | | | | | | ☑ Digital Models Submitted? (Required) | | | | | | | | | ## C. MAPPING REQUIREMENTS | A certified topographic work map must be submitted showing the following information (where applicable): the boundaries of the effective, existing, and proposed conditions 1%-annual-chance floodplain (for approximate Zone A revisions) or the boundaries of the 1%- and 0.2%-annual-chance floodplains and regulatory floodway (for detailed Zone AE, AO, and AH revisions); location and alignment of all cross sections with stationing control indicated; stream, road, and other alignments (e.g., dams, levees, etc.); current community easements and boundaries; boundaries of the requester's property; certification of a registered professional engineer registered in the subject State; location and description of reference marks; and the referenced vertical datum (NGVD, NAVD, etc.). Digital Mapping (GIS/CADD) Data Submitted (preferred) Topographic Information: Peoria County GIS Data (Datum NAVD 88) | | | | | | | |---|--|--|--|--|--|--| | Source: Tri-County Regional Planning Commission Date: 2011 | | | | | | | | Accuracy: 2' contours | | | | | | | | Note that the boundaries of the existing or proposed conditions floodplains and regulatory floodway to be shown on the revised FIRM and/or FBFM must tie-in with the effective floodplain and regulatory floodway boundaries. Please attach a copy of the effective FIRM and/or FBFM, at the same scale as the original, annotated to show the boundaries of the revised 1%-and 0.2%-annual-chance floodplains and regulatory floodway that tie-in with the boundaries of the effective 1%-and 0.2%-annual-chance floodplain and regulatory floodway at the upstream and downstream limits of the area on revision. | | | | | | | | ☑ Annotated FIRM and/or FBFM (Required) | | | | | | | #### D. COMMON REGULATORY REQUIREMENTS* | 1. | For LOMR/CLOMR requests, do Base Flood Elevations (BFEs) increase? | ☐ Yes ☒ No | | | | | | | |--|--|------------------------------|--|--|--|--|--|--| | | a. For CLOMR requests, if either of the following is true, please submit evidence of compliance with Section 65.12 of the NFIP regulations: | | | | | | | | | | The proposed project encroaches upon a regulatory floodway and would result in increases above 0.00 foot compared to pre-project
conditions. | | | | | | | | | | The proposed project encroaches upon a SFHA with or without BFEs established and would result in increases abordomerad to pre-project conditions. | ove 1.00 foot | | | | | | | | | b. Does this LOMR request cause increase in the BFE and/or SFHA compared with the effective BFEs and/or SFHA?
If Yes, please attach proof of property owner notification and acceptance (if available). Elements of and examples of notifications can be found in the MT-2 Form 2 Instructions. | ☐ Yes ☒ No of property owner | | | | | | | | 2. | Does the request involve the placement or proposed placement of fill? | ⊠ Yes □ No | | | | | | | | | If Yes, the community must be able to certify that the area to be removed from the special flood hazard area, to include any structures or proposed structures, meets all of the standards of the local floodplain ordinances, and is reasonably safe from flooding in accordance with the NFIP regulations set forth at 44 CFR 60.3(A)(3), 65.5(a)(4), and 65.6(a)(14). Please see the MT-2 instructions for more information. | | | | | | | | | 3. | For LOMR requests, is the regulatory floodway being revised? | ⊠ Yes □ No | | | | | | | | | If Yes, attach evidence of regulatory floodway revision notification . As per Paragraph 65.7(b)(1) of the NFIP Regulations, notification is required for requests involving revisions to the regulatory floodway. (Not required for revisions to approximate 1%-annual-chance floodplains [studied Zone A designation] unless a regulatory floodway is being established. Elements and examples of regulatory floodway revision notification can be found in the MT-2 Form 2 Instructions.) | | | | | | | | | 4. | For CLOMR requests, please submit documentation to FEMA and the community to show that you have complied with Section Endangered Species Act (ESA). | s 9 and 10 of the | | | | | | | | For actions authorized, funded, or being carried out by Federal or State agencies, please submit documentation from the agency showing its compliance with Section 7(a)(2) of the ESA. Please see the MT-2 instructions for more detail. | | | | | | | | | ^{*} Not inclusive of all applicable regulatory requirements. For details, see 44 CFR parts 60 and 65. O.M.B. NO. 1660-0016 Expires February 28, 2014 #### **RIVERINE STRUCTURES FORM** #### PAPERWORK BURDEN DISCLOSURE NOTICE Public reporting burden for this form is estimated to average 7 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing, reviewing, and submitting the form. You are not required to respond to this collection of information unless a valid OMB control number appears in the upper right corner of this form. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden to: Information Collections Management, Department of Homeland Security, Federal Emergency Management Agency, 1800 South Bell Street, Arlington, VA 20598-3005, Paperwork Reduction Project (1660-0016). Submission of the form is required to obtain or retain benefits under the National Flood Insurance Program. Please do not send your completed survey to the above address. #### PRIVACY ACT STATEMENT AUTHORITY: The National Flood Insurance Act of 1968, Public Law 90-448, as amended by the Flood Disaster Protection Act of 1973, Public Law 93-234. PRINCIPAL PURPOSE(S): This information is being collected for the purpose of determining an applicant's eligibility to request changes to National Flood Insurance Program (NFIP) Flood Insurance Rate Maps (FIRM). | amend
Flood
DISCI | ded. This includes using
Insurance Program; Let
L OSURE: The disclosur | this information as necessar
tter of Map Amendment (LON
of information on this form | ÁA) February 15, 2006, 71 FR 7 | uses published in DHS/FEMA/
990.
provide the information request | NFIP/LOMA-1 National | |-------------------------|---|--
--------------------------------|--|----------------------| | Flood | ing Source: Illinois Rive | <u>er</u> | | | | | Note | e: Fill out one form for ea | ach flooding source studied. | | | | | | | | A. GENERAL | | | | Comp | Channelization
Bridge/Culvert
Dam
Levee/Floodwall | tion(s) for each Structure listecomplete Section Bcomplete Section Ccomplete Section Dcomplete Section E tcomplete Section F (if r | | | | | Descr | iption Of Modeled Struc | <u>cture</u> | | | | | 1. | Name of Structure: Gr | eater Peoria Sanitary District | (GPSD) Treatment Plant Levee | <u>9</u> | | | | Type (check one): | ☐ Channelization | ☐ Bridge/Culvert | ∠ Levee/Floodwall | ☐ Dam | | | Location of Structure: | Right descending bank from | M160.2 to M159.9 | | | | | Downstream Limit/Cro | ss Section: Section at M159. | .40 | | | | | Upstream Limit/Cross | Section: Section at M160.50 | | | | | 2. | Name of Structure: | <u></u> | | | | | | Type (check one): | ☐ Channelization | ☐ Bridge/Culvert | Levee/Floodwall | ☐ Dam | | | Location of Structure: | | | | | | | Downstream Limit/Cro | ss Section: | | | | | | Upstream Limit/Cross | Section: | | | | | 3. | Name of Structure: | | | | | | | Type (check one) | ☐ Channelization | ☐ Bridge/Culvert | ☐ Levee/Floodwall | ☐ Dam | | | Location of Structure: | | | | | | | Downstream Limit/Cro | ss Section: | | | | | | Upstream Limit/Cross | Section: | | | | | | | NOTE: FOR MORE STRU | ICTURES, ATTACH ADDITION | IAL PAGES AS NEEDED. | | | | | | , | | | | | B. CHANNELIZATION | | | | | | | | |------|---|---|------------------------------------|--|--|--|--|--| | Floo | ding Source: | | | | | | | | | Nam | ne of Structure: | | | | | | | | | 1. | Hydraulic Considerations | | | | | | | | | | The channel was designed to carry (cfs) and/or the The design elevation in the channel is based on (check one): | year flood. | | | | | | | | | ☐ Subcritical flow ☐ Critical flow | ☐ Supercritical flow | ☐ Energy grade line | | | | | | | | If there is the potential for a hydraulic jump at the following locat jump is controlled without affecting the stability of the channel. | - . | | | | | | | | | ☐ Inlet to channel ☐ Outlet of channel ☐ At Drop Struct☐ Other locations (specify): | tures | | | | | | | | 2. | Channel Design Plans | | | | | | | | | | Attach the plans of the channelization certified by a registered p | rafaccional angineer, as described in the | o instructions | | | | | | | | , | olessional engineer, as described in the | e instructions. | | | | | | | 3. | Accessory Structures | | | | | | | | | | | tructures | | | | | | | | | ☐ Weir ☐ Other (Describe): | | | | | | | | | 4. | Sediment Transport Considerations | | | | | | | | | Þ | Are the hydraulics of the channel affected by sediment transport? | ☐ Yes ☐ No | | | | | | | | If | yes, then fill out Section F (Sediment Transport) of Form 3. If No sidered. | | ediment transport was not | | | | | | | Floo | C. BRIDG | GE/CULVERT | | | | | | | | | ne of Structure: | | | | | | | | | | | | | | | | | | | 1. | This revision reflects (check one): | | | | | | | | | | □ Bridge/culvert not modeled in the FIS□ Modified bridge/culvert previously modeled in the FIS | | | | | | | | | | Revised analysis of bridge/culvert previously modeled in the F | | | | | | | | | 2. | Hydraulic model used to analyze the structure (e.g., HEC-2 with s If different than hydraulic analysis for the flooding source, justify v the structures. Attach justification. | special bridge routine, WSPRO, HY8): _ | looding source could not analyze | | | | | | | 3. | Attach plans of the structures certified by a registered professional (check the information that has been provided): | al engineer. The plan detail and informa | ation should include the following | | | | | | | | ☐ Dimensions (height, width, span, radius, length) | ☐ Distances Between Cross Section | s | | | | | | | | ☐ Shape (culverts only) | ☐ Erosion Protection | | | | | | | | | ☐ Material | ☐ Low Chord Elevations – Upstream | and Downstream | | | | | | | | ☐ Beveling or Rounding | ☐ Top of Road Elevations – Upstream | m and Downstream | | | | | | | | ☐ Wing Wall Angle | ☐ Structure Invert Elevations – Upstr | ream and Downstream | | | | | | | | ☐ Skew Angle | ☐ Stream Invert Elevations – Upstream | am and Downstream | | | | | | | | | ☐ Cross-Section Locations | | | | | | | | 4. | Sediment Transport Considerations | | | | | | | | | | Are the hydraulics of the structure affected by sediment transport | ? ☐ Yes ☐ No | | | | | | | | | If Yes, then fill out Section F (Sediment Transport) of Form 3. If r | no then attach an explanation | | | | | | | | | D. DAM/BASIN | | | | | | | |----|--|--|--|--|--|--|--| | | oding Source:
me of Structure: | | | | | | | | 1. | This request is for (check one): | | | | | | | | 2. | The dam/basin was designed by (check one): Federal agency State agency Private organization Local government agency | | | | | | | | | Name of the agency or organization: | | | | | | | | 3. | The Dam was permitted as (check one): | | | | | | | | | Provide the permit or identification number (ID) for the dam and the appropriate permitting agency or organization | | | | | | | | | Permit or ID number Permitting Agency or Organization | | | | | | | | | a. | | | | | | | | | Provided related drawings, specification and supporting design information. | | | | | | | | 4. | Does the project involve revised hydrology? ☐ Yes ☐ No | | | | | | | | | If Yes, complete the Riverine Hydrology & Hydraulics Form (Form 2). | | | | | | | | | Was the dam/basin designed using critical duration storm? (must account for the maximum volume of runoff) | | | | | | | | | Yes, provide supporting documentation with your completed Form 2. | | | | | | | | | ☐ No, provide a written explanation and justification for not using the critical duration storm. | | | | | | | | 5. | Does the submittal include debris/sediment yield analysis? ☐ Yes ☐ No | | | | | | | | | If Yes, then fill out Section F (Sediment Transport). If No, then attach your explanation for why debris/sediment analysis was not considered? | | | | | | | | 6. | Does the Base Flood Elevation behind the dam/basin or downstream of the dam/basin change? | | | | | | | | | If Yes, complete the Riverine Hydrology & Hydraulics Form (Form 2) and complete the table below. | | | | | | | | | Stillwater Elevation Behind the Dam/Basin | | | | | | | | | FREQUENCY (% annual chance) FIS REVISED | | | | | | | | | 10-year (10%) | | | | | | | | | 50-year (2%) | | | | | | | | | 100-year (1%) | | | | | | | | | 500-year (0.2%) | | | | | | | | _ | Normal Pool Elevation | | | | | | | | 7. | Please attach a copy of the formal Operation and Maintenance Plan | | | | | | | | | E. LEVEE/FLOODWALL | | | | | | | | 1. | System Elements | | | | | | | | | |----|--|--|-------------------|---|-------------------|---|--------------|--|--| | | a. This Levee/Floodwall analysis is based on (check of | upgrading of
an existing
levee/floodwall
system | | a newly
constructed
levee/floodwall
system | | reanalysis of
an existing
levee/floodwall
system | | | | | | b. Levee elements and locations are (check one): | | | | | | | | | | | structural floodwall | Station 0+00 to 66+2 Station | | | | | | | | | | c. Structural Type (check one): | n place reinforced co | ncrete 🗌 reinford | ed co | oncrete masonry b | lock | sheet piling | | | | | d. Has this levee/floodwall system been certified by a Federal agency to provide protection from the base flood? | | | | | | | | | | | ☐ Yes | | | | | | | | | | | If Yes, by which agency? | | | | | | | | | | | e. | At | tach ce | ertified dra | awings containing the following | g information (in | idicate drawing s | sheet numbers): | | | | |------|---|----------|----------------|--------------|--|-------------------|--------------------|----------------------------------|-----------------------------|-------------------|----------------| | | 1. Plan of the levee embankment and floodwall structures. Sheet Numbers: A1-A2 | | | | | | | | | <u>-A2</u> | | | | 3. A profile of the BFE, closure opening outlet and inlet invert elevations, type and size | | | | | | | Sheet No | neet Numbers: <u>B1-B11</u> | | | | | | | | | | | | Sheet No | umbers: <u>B1</u> | <u>-B11</u> | | | | | | - | | for the embankment protectio | | | . d. R | Sheet No | umbers: <u>A2</u> | | | | | 5. | | - | ut, and size and shape of the le
cture, closure structures, and p | | ent features, four | ndation treatment, | Sheet No | umbers: <u>R1</u> | -R80 | | 2. | <u>Fr</u> | eeb | oard | | | | | | | | | | | | a. | The n | ninimum 1 | freeboard provided above the | BFE is: | | | | | | | | | | 3.6 ft | t | | | | | | | | | | | <u>R</u> | iverine | ! | | | | | | | | | | | 3 | .0 feet | or more a | at the downstream end and the | oughout | | | | ⊠ Yes | □No | | | | 3 | .5 feet | or more a |
at the upstream end | | | | | | ☐ No | | | | 4 | .0 feet | within 10 | 0 feet upstream of all structure | es and/or constr | ictions | | | Yes | □ No | | | | <u>C</u> | <u>coastal</u> | | | | | | | | | | | | | | | e height of the one percent wa
levation or maximum wave rur | | | ial-chance | | ☐ Yes | □No | | | | 2 | .0 feet | above the | e 1%-annual-chance stillwater | surge elevation | 1 | | | ☐ Yes | □No | | | | | | | asionally exceptions are made | | | rement. If an except | on is requ | uested, atta | ch | | | | lf | No is a | answered | I to any of the above, please a | ttach an explan | ation. | | | | | | | b. | ls | there a | an indicati | ion from historical records tha | ice-jamming ca | an affect the BFE | :? ☐ Yes | ⊠ No | | | | | If Y | es, | provid | e ice-jam | analysis profile and evidence | that the minimu | ım freeboard dis | cussed above still exi | sts. | | | | 3. | <u>C</u> | losu | <u>ures</u> | | | | | | | | | | | a. | Op | penings | s through | the levee system (check one) | : 🛛 | exists | es not exist | | | | | | lf | ope | ening e | xists, list | all closures: | | | | | | | | | Cha | anne | el Stati | on | Left or Right Bank | Openi | ng Type | Highest Elevatio
Opening Inve | | Type of | Closure Device | | See | Atta | ach | ed | (Ext | end | tab | ole on | an adde | d sheet as needed and ref | erence) | | | | | | | Note | Note: Geotechnical and geologic data | | | | | | | | | | | | ana | In addition to the required detailed analysis reports, data obtained during field and laboratory investigations and used in the design analysis for the following system features should be submitted in a tabulated summary form. (Reference U.S. Army Corps of Engineers [USACE] EM-1110-2-1906 Form 2086.) | | | | | | | | | | | | 4. | Em | bankment Protection | <u>1</u> | | | | | | | | |-------|-----------|---|--------------------|-----------------|------------------------|------------------------|---------------------|-----------------|-----------------------|-------------------| | | a. | a. The maximum levee slope land side is: 3.3 (h) to 1 (v) | | | | | | | | | | | b. | The maximum levee slope flood side is: 3 (h) to 1 (v) | | | | | | | | | | | C. | The range of veloci | ities along the le | evee during th | e base flood is | : <u>1.1 fps</u> (min. |) to <u>1.5 f</u> p | os (max.) | | | | | d. | Embankment mate | rial is protected | by (describe | what kind): <u>vec</u> | <u>jetative cover</u> | | | | | | | e. | Riprap Design Para
Attach references | ameters (check | one): | ∨elocity | ПТ | ractive sti | ress | | | | | | Decek | Cidaalana | Flow | | Curve or | | Stone | Riprap | Double of Toolson | | | | Reach | Sideslope | Depth | Velocity | Straight | D ₁₀₀ | D ₅₀ | Thickness | Depth of Toedown | | Sta | | to | | | | | | | | | | Sta | | to | | | | | | | | | | Sta | | to | | | | | | | | | | Sta | | to | | | | | | | | | | Sta | | to | | | | | | | | | | Sta | | to | | | | | | | | | | (Exte | end t | able on an added sh | neet as needed | and reference | e each entry) | | | | | | | | f. | Is a bedding/filter a | nalysis and des | ign attached? | Yes | ⊠ No | | | | | | | g. | Describe the analys | sis used for othe | er kinds of pro | otection used (i | nclude copies | of the de | sign analy | /sis): | | | | | Refer to the Geotec | chnical Investiga | ation Report (| GIR), Appendix | (J | | | | | | Atta | h er | ngineering analysis to | o support const | ruction plans. | | | | | | | | 5. | Em | bankment And Four | ndation Stability | | | | | | | | | | a.
See | Identify locations a | | | | | ınalysis: | | | | | | | Overall height: | | | - | | | | | | | | | | tion soil strengt | h: | | | | | | | | | | Strength $\phi = $ | degrees, | c = ps | f | | | | | | | | | Slope: SS = _ | (h) to | (v) | | | | | | | | | | (Repeat as ne | eded on an add | ed sheet for a | additional locati | ons) | | | | | | | b.
The | Specify the embar | | | | (e.g., circular | arc, slidin | g block, ir | nfinite slope, etc.): | | | | C. | Summary of stabil | ity analysis resu | ılts: | #### E. LEVEE/FLOODWALL (CONTINUED) Embankment And Foundation Stability (continued) Case **Loading Conditions** Critical Safety Factor Criteria (Min.) End of construction Refer to application narrative 1.3 Ш Sudden drawdown Refer to application narrative 10 Ш Critical flood stage Refer to application narrative 1.4 I٧ Steady seepage at flood stage Refer to application narrative 1.4 VΙ Earthquake (Case I) Refer to application narrative 1.0 (Reference: USACE EM-1110-2-1913 Table 6-1) d. Was a seepage analysis for the embankment performed? Yes □ No If Yes, describe methodology used: Finite element analysis Was a seepage analysis for the foundation performed? Yes ☐ No Were uplift pressures at the embankment landside toe checked? Yes □ No q. Were seepage exit gradients checked for piping potential? h. The duration of the base flood hydrograph against the embankment is N/A hours. Attach engineering analysis to support construction plans. 6. Floodwall And Foundation Stability a. Describe analysis submittal based on Code (check one): ☐ UBC (1988) Other (specify): _____ b. Stability analysis submitted provides for: Overturning ☐ Sliding If not, explain: _____ c. Loading included in the analyses were: \square Lateral earth @ $P_A = \underline{\hspace{1cm}} psf; P_p = \underline{\hspace{1cm}} psf$ ☐ Surcharge-Slope @ _____, ☐ surface _____ psf ☐ Wind @ P_w = _____ psf ☐ Earthquake @ P_{eq} = _____ %g ☐ Seepage (Uplift); _____ ☐ 1%-annual-chance significant wave height: ft. ☐ 1%-annual-chance significant wave period: Summary of Stability Analysis Results: Factors of Safety. Itemize for each range in site layout dimension and loading condition limitation for each respective reach. То Criteria (Min) Sta Sta То **Loading Condition** Overturn Sliding Overturn Sliding Overturn Sliding Dead & Wind 1.5 1.5 Dead & Soil 1.5 1.5 Dead, Soil, Flood, & 1.5 1.5 Impact Dead, Soil, & Seismic 1.3 1.3 | (Ref: FEMA 114 Sept 1986; USACE EM | M 1110-2-2502) | | | |--|----------------------|-----------------------|--| | Note: (Extend table on an added sheet as needed and reference) | E. LEVEE/FLOODWALL (CONTINUED) | | | | | 6. Floodwall And Foundation Stability (continued) | | | | | | | | | | e. Foundation bearing strength for each soil type: | | | | | | <u> </u> | Т | | | Bearing Pressure | Sustained Load (psf) | Short Term Load (psf) | | | | | | | | Maximum allowable | | |-------------------|--| | | | | | | | | | Computed design maximum | | f. | . Foundation scour protection ☐ is, ☐ is not provided. If provided, at | tach explanation and supporting documentation: | | | | |----|-------------------|--|--|--|--|--| | | | | acon explanation and supporting documentation. | | | | | _ | | Attach engineering analysis to support construction plans. | | | | | | 7. | <u>Settlement</u> | | | | | | | | a. | a. Has anticipated potential settlement been determined and incorpora established freeboard margin? ☐ Yes ☐ No | ed into the specified construction elevations to maintain the | | | | | | b. | o. The computed range of settlement is <u>0.025</u> ft. to <u>0.075</u> ft. | | | | | | | C. | c. Settlement of the levee crest is determined to be primarily from : Other (Describe): | ☐ Foundation consolidation ☐ Embankment compression | | | | | | d. | d. Differential settlement of floodwalls ☐ has ☐ has not been accor | nmodated in the structural design and construction. | | | | | | | Attach engineering analysis to support construction plans. | | | | | | 8. | Inte | nterior Drainage | | | | | | | a. | a. Specify size of each interior watershed: | | | | | | | | Draining to pressure conduit: 47.5 acres Draining to ponding area: 10.5 acres | | | | | | | b. | o. Relationships Established | | | | | | | | Ponding elevation vs. storage ☐ Yes | □No | | | | | | | Ponding elevation vs. gravity flow ☐ Yes Differential head vs. gravity flow ☐ Yes | □ No
⊠ No | | | | | | | Differential head vs. gravity flow ☐ Yes | <u>⊠</u> № | | | | | | C. | c. The river flow duration curve is enclosed: | ⊠ No | | | | | | d. | d. Specify the discharge capacity of the head pressure conduit: 241.4 | ofs | | | | | | e. | e. Which flooding conditions were analyzed? | | | | | | | | Gravity flow (Interior Watershed) Yes | □No | | | | | | | Common storm (River Watershed) | - | | | | | | | Historical ponding probability Section The | ⊠ No | | | | | | | Coastal wave overtopping Yes | ⊠ No | | | | | | | If No for any of the above, attach explanation. | | | | | | | e. | e. Interior drainage has been analyzed based on joint probability of int facilities to provide the established level of flood protection. | erior and exterior flooding and the capacities of pumping and outlet s | | | | | | g. | g. The rate of seepage through the levee system for the base flood is $\underline{0}$ | .126 cfs | | | | | | h. | n. The length of levee system used to drive this seepage rate in item g | <u>6625</u> ft. | E. LEVEE/FLOODWAL | L (CONTINUED) | | | | | 8. | Inte | nterior Drainage (continued) | | | | | | | i. | Will pumping plants be used for interior drainage? | ⊠ Yes □ No | | | | | | | If Yes, include the number of pumping plants: 1. For each pumping | plant_list: | | | | | | Plant #1 |
Plant #2 | |--|--|---| | The number of pumps | 3 & 1 Pump in Reserv | | | The ponding storage capacity | 17.6 Ac-ft | | | The maximum pumping rate | 241.5 cfs (156 MGD) | | | The maximum pumping head | NA | | | The pumping starting elevation | River Elev. 447.10 | | | The pumping stopping elevation | NA | | | Is the discharge facility protected? | Yes | | | Is there a flood warning plan? | Yes | | | How much time is available between warning and flooding? | 7 Days | | | Will the operation be automatic? | Yes | | | If the pumps are electric, are there backup power | r sources? | □ No | | (Reference: USACE EM-1110-2-3101, 3102, 31 | 03, 3104, and 3105) | | | Include a copy of supporting documentation of da interior watersheds that result in flooding. | ata and analysis. Provide a map showing the floode | ed area and maximum ponding elevations for all | | 9. Other Design Criteria | | | | a. The following items have been address | ed as stated: | | | Liquefaction ☐ is ☒ is not a problen | | | | Hydrocompaction ☐ is ☒ is not a pr | | | | Heave dilierential movement due to so | oils of high shrink/swell ☐ is ☒ is not a problem | | | For each of these problems, state the base see attached application narrative | asic facts and corrective action taken: | | | Attach supporting documentation | | | | | d, will the structure adversely impact flood levels an
supporting documentation | nd/or flow velocities floodside of the structure? | | d. Sediment Transport Considerations: | | | | Was sediment transport considered? If Yes, then fill out Section F (Sediment 10. Operational Plan And Criteria | ☐ Yes ☑ No
nt Transport). If No, then attach your explanation fo | or why sediment transport was not considered. | | a. Are the planned/installed works in full | compliance with Part 65.10 of the NFIP Regulations | s? 🛚 Yes 🔲 No | | b. Does the operation plan incorporate al ⊠ Yes ☐ No | II the provisions for closure devices as required in P | Paragraph 65.10(c)(1) of the NFIP regulations? | | <u> </u> | he provisions for interior drainage as required in Par
to any of the above, please attach supporting docu | | | | | | | | E. LEVEE/FLOODWALL (CONTINUED) | | | Contract of | | | | | |--------------|--|--|--|--| | 11. | Maintenance Plan Please attach a copy of the fomal maintenance plan for the levee/floodwall | | | | | 12. | Operations and Maintenance Plan | | | | | | Please attach a copy of the formal Operations and Maintenance Plan for the levee/floodwall. | | | | | | CERTIFICATION OF THE LEVEE DOCUMENTION | | | | | hydr | certification is to be signed and sealed by a licensed registered professional engineer authorized by law to certify elevation information data, blogic and hydraulic analysis, and any other supporting information as per NFIP regulations paragraph 65.10(e) and as described in the MT-2 is Instructions. All documents submitted in support of this request are correct to the best of my knowledge. I understand that any false ment may be punishable by fine or imprisonment under Title 18 of the United States Code, Section 1001. | | | | | Certi | fier's Name: Matthew A. Zick, P.E. License No.: 062.055034 Expiration Date: 11.30.21 | | | | | | pany Name Crawford, Murphy & Tilly, Inc. Telephone No.: 309.680.1304 Fax No.: 309.637.1891 | | | | | Sign | ature: Date: E-Mail Address: _mzick@cmtengr.com | | | | | | F. SEDIMENT TRANSPORT | | | | | Floo | ding Source: | | | | | Nam | e of Structure: | | | | | and/
sedi | ere is any indication from historical records that sediment transport (including scour and deposition) can affect the Base Flood Elevation (BFE); or based on the stream morphology, vegetative cover, development of the watershed and bank conditions, there is a potential for debris and ment transport (including scour and deposition) to affect the BFEs, then provide the following information along with the supporting mentation: | | | | | Sedi | ment load associated with the base flood discharge: Volume acre-feet | | | | | Deb | ris load associated with the base flood discharge: Volume acre-feet | | | | | Sedi | ment transport rate (percent concentration by volume) | | | | | Meth | nod used to estimate sediment transport: | | | | | | t sediment transport formulas are intended for a range of hydraulic conditions and sediment sizes; attach a detailed explanation for using the cted method. | | | | | | Method used to estimate scour and/or deposition: | | | | | | Method used to revise hydraulic or hydrologic analysis (model) to account for sediment transport: | | | | | Plea
on b | se note that bulked flows are used to evaluate the performance of a structure during the base flood; however, FEMA does not map BFEs based ulked flows. | | | | | If a s | sediment analysis has not been performed, an explanation as to why sediment transport (including scour and deposition) will not affect the BFEs ructures must be provided. | # Appendix A MT-2 Application Narrative | \boldsymbol{C} | ^ | 10 | 4 | ^ | 10 | 4 | | |------------------|---|----|---|---|----|---|---| | C | U | Ш | l | U | 11 | l | 2 | | 1. | System Elements | 1 | |-----|--|---| | 2. | Freeboard | 1 | | 3. | Closures | 1 | | Р | enetrations | 1 | | 4. | Embankment Protection | 4 | | 5. | Embankment & Foundation Stability | 4 | | 6. | Floodwall and Foundation Stability | 7 | | 7. | Settlement | 7 | | 8. | Interior Drainage | 7 | | 9. | Other Design Criteria | 8 | | 10. | Riverine Hydraulics and Hydrology | 8 | | | | | | | | | | Lis | t of Tables | | | Tab | le 1 - Target NGVD 29 and NAVD 88 Elevations | 1 | | Tab | le 2 - GPSD Levee Closure Table | 2 | | Tab | le 3 - Critical Section Locations for Analysis | 4 | | Tab | le 4 - Design Values for Embankment and Foundation Materials | 5 | | Tab | le 5 - Slope Stability Safety Factors by Condition & Station | 5 | | Tah | le 6 – Exit Gradients by Station | 7 | # 1. System Elements This levee analysis is based on the upgrade of an existing levee system; the Greater Peoria Sanitary District's treatment plant levee, which lies along the right descending bank of the Illinois River near Mile 160 in Peoria, Illinois. The levee consists of a semi-circular earthen embankment approximately 6,625' in length. This levee has not been certified by a federal agency as providing protection from the base flood, but a prior submittal did result in a Conditional Letter of Map Revision for proposed levee improvements. This updated CLOMR request seeks to establish a plan for levee certification that does not involve groundwater relief well pumping; otherwise, submitted information is largely the same. ### 2. Freeboard The proposed minimum freeboard to be provided above the Base Flood Elevation (BFE) is 3.6 feet along the southern segment of the levee; 4 feet or more is provided on the remainder. The table below summarizes the BFE and target elevations for the project in both NGVD 29 and NAVD 88 elevations. | Critical Factor | NGVD 29 Elevation | NAVD 88 Elevation | |-------------------------------|-------------------|-------------------| | Base Flood Elevation | 459.20 | 458.90 | | Minimum Overtopping Elevation | 462.70 | 462.40 | Table 1 - Target NGVD 29 and NAVD 88 Elevations The elevations shown above are based on a conversion between the datums at latitude 40.66006637963 and longitude 89.61897611618. Since the NAVD 88 datum was used for this project, the elevations reported herein will be based on the 88 datum unless otherwise noted. The facility is not within 100 feet of structures or constrictions that would require the minimum 4.0 feet of freeboard for riverine structures and the Flood Insurance Study does not indicate that ice-jamming affects the BFE. ### 3. Closures Since the levee protects a sewage treatment plant, openings through the levee exist. There are no large openings for vehicles or railways that require closure; all of the openings are related to plant effluent. Table 2 lists openings and information pertinent to them. In addition, Part IV of the GPSD Levee Operations and Maintenance Manual provides detailed information and inspection reports on the plant closures. ### **Penetrations** In addition to the noted closures, there are several locations where utilities pass under the levee. As part of the proposed improvements leading up to levee certification, these utility trenches will be exposed for approximately 10 feet at the exterior toe of the levee and the trench filled with flowable fill to reduce the chance the utility trench can serve as a preferential flow path for infiltration. At several locations under the expanded levee at the north end of the plant, load relief platforms were constructed where the new levee was built over existing large diameter sewers. As part of the proposed improvements, these penetrations will be exposed and a specific plan developed to seal them, most likely by pumping the void space full of grout or flowable fill. | Structure
Designation | Levee
Station | GPSD Location
Coordinates | Channel
Station | Channel
Left or
Right Bank | Opening
Type |
Highest Elevation for Opening Invert | Type of
Closure Device | |--|------------------|------------------------------|--------------------|----------------------------------|---|--------------------------------------|---| | Water Level
Control
Structure (Outfall
001) | 7+22 | 4+00 E/4+00 S | 160.1 | Right Bank | 60" Pipe
and
Outfall
Structure | 447.00
446.00
442.00 | Sluice Gates:
S.G19 72"x72"
S.G76 72"x72"
S.G77 24"x24" | | Levee Manhole
(Outfall 002) | 1+50 | 4+70 E/1+77 N | 160.2 | Right Bank | 72" Outfall
Pipe | 428.25 | Sluice Gate:
S.G78 72"x72" | | Control Chamber 1 | 58+83 | 0+00 /6+25 N | 160.2 | Right Bank | 54" Pipe to
WWTP
48" Pipe to
River | 441.38
445.50 | Sluice Gates:
S.G2 54"x54" to WWTP
S.G87 72"x48" to Illinois River | | Control Chamber 1
(Bypass Flows) | 61+35 | 0+00 /6+25 N | 160.2 | Right Bank | 84" Pipe to
Bypass
Pump | 444.75 | Sluice Gate:
S.G1 84"x84" to bypass pump | | Administration
and Laboratory
Building Sanitary
Sewer Valve Vault | 41+49 | 8+10 W/2+50 S | 160.1 | Right Bank | 8" Sanitary
Sewer | 445.79 | Motor Controlled Plug Valve | | Drainage Pump | 4+60 | 2+00 E/1+65 S | 160.1 | Right Bank | 12"
Forcemain | 427.75 | 12" forcemain has been disconnected and capped. Drainage pump discharges directly into the treatment process. | | Effluent Pump
Station | 8+32 | 4+00 E/5+00 S | 160.1 | Right Bank | 20' wide
Outfall
Spillway | 463.00 | Closure for internal drainage only, Sluice Gates: S.G17 72"x72" S.G18 72"x72" | Table 2 - GPSD Levee Closure Table ## 4. Embankment Protection The existing maximum land side levee slope is roughly 3.3 (H) to 1 (V) while the maximum flood side levee slope is 3 (H) to 1 (V). Cross sections showing the existing and proposed levee are included with the application as sheets B13 to B41. The September 17, 2004 version of the Peoria County Flood Insurance Study lists a mean velocity of 1.1 ft/sec for the Illinois River at Section Y (Mile 160.0). The existing levee is a vegetated earthen embankment and such cover is well suited to the low velocities exhibited by the Illinois River. Additional discussion on this topic is provided in the included Geotechnical Investigation Report (GIR) with support calculations provided in Appendix J. As noted in the GIR, there is some history of erosion occurring in the NE corner of the levee during a flood event in 1974, and repairs thereafter seem to have been successful. In addition, the same area sustained erosion damage during the 2019 flood event (subsequently repaired under PL84-99 program). The duration of the 2019 flood event was sufficiently long that the grass cover on the riverside slope was completely damaged, and erosion appeared to occur from wave action against the bare earth slope. The proposed levee improvements include hard armor protection in this area. Properly bedded riprap or ArmorFlex revetment mat (or similar) is proposed from station 65+50 to 66+25.66/0+00 and from 0+00 to 2+50 and will extend from the toe of the flood side levee slope to the crest. Embankment erosion has not been an issue with the remainder of the levee, however, after experiencing prolonged flooding in recent years, there has been an increase in noted erosion on the river side of the embankment. It is possible that the prolonged flooding killed vegetated cover, which left the embankment more susceptible to erosion. The District's O&M Manual has been updated to include post-flood review of the impacts to vegetated cover and procedures for re-establishing vegetated cover sooner rather than later. # 5. Embankment & Foundation Stability The embankment and foundation stability analysis was a significant part of the GIR prepared in support of this CLOMR application and a complete discussion and presentation of the analysis and results can be found within the report. The Geotechnical Investigation included extensive field sampling, laboratory testing, and piezometer monitoring. The investigation indicated the uppermost native soils (Cahokia Formation) to consist primarily of fine grained silts and clays with some sand and gravel. This material is geologically recent alluvium. The underlying material is outwash material consisting mainly of sand and gravel with a mixture of silts and clays (Henry Formation). Both formations are heterogeneous given the complex depositional environment of the Illinois River and the confluence of Kickapoo Creek. Bedrock is at least 100 feet below the ground surface. The embankments were constructed from nearby borrow areas (adjoining the levees), and therefore consist of reworked Cahokia material, including sand and gravel lenses. Similarly, lagoon excavations penetrate well into the Cahokia formation. Piezometer data clearly indicates the strong connectivity between the Illinois River and the granular Henry Formation. The tables below summarize the analysis information and results that are pertinent to Section E5 of the MT-2 Form. | Cross Section Station | Cross Section Location | Embankment
Height (ft) | Slope
(H:V) | Description | |-----------------------|---|---------------------------|----------------|---| | Station 1+70N | North End of East
Levee | 16 | 3.8:1 | Landside Toe el. 441-442 | | Station 1+70S | North End of East
Levee | 11 | 3:1 | Landside Toe el. 450 ft | | Station 9+15 | South Central
Portion of East
Levee | 10 | 4.4:1 | Near Screw Pumps with Access Ramp | | Station 10+00 | South Central
Portion of East
Levee | 10 | 3.6:1 | Near Screw Pumps but with Access
Ramp | | Station 18+35 | East Portion of South Levee | 12 | 3:1 | Southeast Lagoon | | Station 24+00 | West Portion of
South Levee | 11 | 3:1 | Southwest Lagoons | | Station 45+00 | Central Portion of West Levee | 21 | 4:1 | Low-lying Area, Landside Toe el. 441 | | Station 47+00 | Central Portion of West Levee | 17 | 4:1 | Low-lying Area, Landside Toe el. 441,
Location of Observed Seepage | | Station 53+00 | Central Portion of
North Levee | 9 | 3:1 | Driveway at Landside Toe | | Station 56+00 | Central Portion of
North Levee | 10 | 3.5:1 | 1974 Levee Expansion Area | | Station 59+00 | Central Portion of
North Levee | 10 | 3.5:1 | Seepage Comparison | **Table 3 - Critical Section Locations for Analysis** It should be noted that berms and pervious fills along with controls on the interior water levels in the lagoons are a part of the proposed improvements to the levee system to ensure adequate factors of safety. | | | Recommer | nded Value | |---------------------|---|-------------------|------------------| | | Tested Condition | Cohesion
(psi) | Phi
(degrees) | | als | Unconsolidated-Undrained Triaxial Test | 8.6 | 0.0 | | Fill
Materials | Consolidated-Undrained Triaxial Test (Total Stress) | 1.8 | 16.4 | | Š | Consolidated-Undrained Triaxial Test (Effective Stress) | 0.0 | 31.0 | | ia
al | Unconsolidated-Undrained Triaxial Test | 7.2 | 0.0 | | Cahokia
Material | Consolidated Undrained Triaxial Test (Total Stress) | 3.0 | 14.0 | | ပိုင် | Consolidated-Undrained Triaxial Test (Effective Stress) | 0.5 | 27.0 | | Henry
Materia | Estimated Value | 0 | 30 | **Table 4 - Design Values for Embankment and Foundation Materials** Table 5 summarizes the calculated critical safety factors for each required case and at each identified station. A full discussion and presentation of these results is available in the GIR, pages 29 to 38. Because of the slow rise and fall of the Illinois River, it was assumed that Case III and Case IV would be the same for this levee system. The Peak Ground Acceleration (PGA) value for this site is 0.009g. Since this value is less than 0.10g, no seismic analysis is required for liquefaction potential under USACE EC 1110-2-6067. Table 5 - Slope Stability Safety Factors by Condition & Station | | Factors of Safety at Critical Sections | | | | | | |---------------------------------|--|---|---|--|--|--| | Critical Sections by
Station | Case I
End of Construction
(Min. FS = 1.3) | Case II
Sudden Drawdown
(Min. FS = 1.0) | Case III and IV Steady Seepage at Flood Stage (Min. FS = 1.4) | | | | | Station 1+70N | 3.24 | 1.48 | 1.45 | | | | | Station 1+70S | 4.42 | 1.50 | 1.40 | | | | | Station 9+15 | 4.39 | 1.58 | 1.67 | | | | | Station 10+00 | 5.00 | 1.54 | 1.42 | | | | | Station 18+35 | 2.98 | 1.09 | 1.41 | | | | | Station 24+00 | 2.11 | 1.26 | 1.93 | | | | | Station 45+00 | 2.83 | 2.58 | 1.59 | | | | | Station 47+00 | 3.20 | 4.79 | 1.57 | | | | | Station 53+00 | 5.23 | 1.93 | 1.90 | | | | | Station 56+00 | 4.03 | 2.15 | 1.44 | | | | | Station 59+00 | 4.04 | 2.26 | 1.44 | | | | Seepage analyses for the embankment and the embankment foundation were performed using finite element analysis. In addition, uplift pressures at the embankment landside toe and seepage exit pressure gradients were checked. The following table presents seepage exit gradients at the landside levee toe and berm toe where applicable. **Table 6 - Exit Gradient by Station** | Critical Sections by
Station | Existing Exit Gradient at Levee Toe | Exit Gradient at
Modified Levee Toe | Exit Gradient at
Modified Levee Berm
Toe | |---------------------------------|-------------------------------------|--|--| | Station 1+70N | 0.64 | 0.47 | 0.77 | | Station 1+70S | 0.33 | 0.28
| 0.33 | | Station 9+15 | 0.09 | NA | NA | | Station 10+00 | 0.11 | NA | NA | | Station 18+35 | 0.28 | 0.22 | NA | | Station 24+00 | 0.20 | 0.18 | NA | | Station 45+00 | 1.00 | 0.28 | 0.28 | | Station 47+00 | 0.71 | 0.46 | 0.73 | | Station 53+00 | 0.20 | 0.20 | NA | | Station 56+00 | 0.17 | 0.17 | NA | # 6. Floodwall and Foundation Stability Floodwalls are not part of the existing or proposed flood protection of the Greater Peoria Sanitary District and therefore no information is provided in this section of the report. ## 7. Settlement The existing levee has been in place for approximately 80 years and the maximum thickness of fill to be added to the levee to bring the crest to an acceptable elevation for certification is approximately 4.0 feet. Settlement Considerations were included in the GIR analysis (Page 47 with calculations in GIR Appendix M) and determined that foundation consolidation is the primary mode of settlement. The estimated total settlement range is approximately 0.7 to 1.3 inches and will occur rapidly with the placement of the additional fill load. The crest elevation will be closely monitored during and after placement of the fill material to ensure the target elevation is achieved. Since floodwalls are not part of the protection scenario, differential settlement of floodwalls is not applicable. # 8. Interior Drainage Included with this CLOMR application is a report by Crawford, Murphy, & Tilly, Inc. that considers the interior watersheds and how rainfall within the plant levee is handled. The interior was broken down into separate watersheds and the relationships between ponding elevations, storage, and the capacity for gravity flow evaluated. We requested flow duration curves for the Illinois River from the US Army Corps of Engineers and were told that none were available. When gravity discharge from the plant to the Illinois River is not possible, three large Archimedes screws (1 reserve screw pump) elevate the effluent and discharge it over a spillway into the river. As such, differential head based on the exterior water level is not a factor in the pumping capacity of the primary means of evacuating water from the interior of the levee. Historical ponding and coastal wave overtopping were not determined to be conditions of concern for the purposes of this application. The existing and proposed interceptor flow control structures provide the District with the ability to throttle sanitary sewer flow (wastewater) into their treatment process, thereby giving them flexibility to allow more storm water into the treatment process from internal tributary areas and vary the ratio of effluent to storm water being evacuated by the screw pumps. Wave heights tend to be very limited on the Illinois River and, given its inland location, are the result of wind action on the surface of the water. The plant's location on the west side of the river and predominate winds from the west-northwest put the levee on the windward side of the Illinois River. Seepage Considerations appear in the GIR document (Pages 39-44) with a discussion of the factors affecting the seepage rate. Seepage through the levee is not a significant concern and the rates determined in the investigation represent 0.05% of the total capacity of the effluent screw pumps. In the "worst case scenario" investigated in the drainage analysis, the river is at or near its Base Flood Elevation during a 1% rainfall event, causing significant interior storm water to be conveyed by the internal drainage system. Under this scenario, the aforementioned throttling of wastewater through the treatment process may or may not be necessary, depending on the volume carried by the interceptor sewers. Our analysis shows that short duration, high intensity rainfall events could overwhelm the inlet collection and conveyance system in the northeast part of the facility and cause water to pond within a foot of the finished floor elevation (FFE) of some buildings in the area. To reduce the risk of damage from higher than anticipated ponding, the levee improvement plan calls for setting overflow inlets with rims sized and set to limit the ponding depth in these areas below the existing FFE's. The plant's screw pumps are not operated automatically, but they are an essential part of the plant's operation when gravity discharge is not possible. The plant is staffed 24 hours a day, 7 days a week, 365 days per year, so the screw pumps can be activated whenever the need arises. Electricity to the plant is fed from two separate parts of the electrical grid, providing redundancy for plant operation. In addition, the plant also has backup diesel generators should the redundant power feeds fail. # 9. Other Design Criteria Liquefaction, hydro compaction, and differential movement due to shrink/swell potential are not significant factors for the purposes of this application per the Geotechnical Investigation Report. The insitu soils are non-collapsible soil types that are not susceptible to shrink/swell. # 10. Riverine Hydraulics and Hydrology The proposed improvements to the GPSD levee will not adversely impact flood levels or the flow velocities. HEC-RAS models of the Illinois River were prepared and submitted to IDNR for review and approval, along with annotated FIRM and FBFM mapping and flood boundary exhibits. Copies of these documents are provided as part of the Regulatory Data Documentation, along with copies of notice to adjacent property owners and the City's notification of floodway revision for the Illinois River. We recoordinated with IDNR in April 2021 and the email below indicated that a resubmittal of hydraulics information was not required for this updated CLOMR submittal. Overview & Concurrence forms signed by Peoria County and Bartonville are also included within this section as communities with map panels adjacent to the proposed change. Documentation from the communities of Creve Coeur and East Peoria (opposite side of the river) are also included. **External Message:** This email was sent from someone outside of CMT. Please use caution with links and attachments from unknown senders or receiving unexpected emails. ## Good Morning Matt, I have talked with Paul, and since the ponds are lower (incised), the embankments were considered just levees and the Dam Safety Section did not need to comment. Based on the information provided to IDNR/OWR, the modifications to the levee system (minor fill) appear to be very minimal and will likely have no impacts to the floodway analysis determined previously. Therefore IDNR/OWR does not need a new submittal of the hydraulic analysis. Let me know if you have any other questions, or need a formal written letter. William Milner Jr, P.E., CFM Section Chief, Downstate Regulatory Program Illinois Department of Natural Resources Office of Water Resources One Natural Resources Way Springfield, IL 62702-1271 (217) 524-1458 bill.milner@illinois.gov # GREATER PEORIA SANITARY DISTRICT LEVEE IMPROVEMENT & CERTIFICATION PROJECT # MT-2 APPLICATION & SUPPORT DOCUMENTATION PRELIMINARY PLAN SHEETS & RECORD DRAWINGS JUNE 2021 PEORIA, IL ### INDEX TO SHEETS | | INDEX TO SHEETS | |-------------|---| | SHEET NO. | DESCRIPTION | | | COVER SHEET | | A1 | EXISTING LEVEE KEY MAP | | A2 | PROPOSED LEVEE KEY MAP | | A3 | PROPOSED INTERIOR DRAINAGE | | B1-B11 | LEVEE PLAN & PROFILE SHEETS | | B12-B14 | LEVEE TYPICAL SECTIONS | | B15-B47 | LEVEE CROSS SECTIONS | | D13-D47 | FLOOD BOUNDARY MAP (DUPLICATE EFFECTIVE) | | D2 | FLOOD BOUNDARY MAP (PROPOSED MODEL | | D3 | FLOOD BOUNDARY MAP (TOPOGRAPHIC WORK MAP) | | D3
D4 | ANNOTATED FIRM MAP | | D5 | ANNOTATED FIRM MAP | | Do | ANNOTATED FBFW MAP | | | RECORD DRAWINGS | | D4 D4 | FIRST CONSTRUCTION OF LEVEL (1999) | | R1-R4
R5 | FIRST CONSTRUCTION OF LEVEE (1928) COMMERCIAL SOLVENTS MOLASSES LINE (1929) | | R6-R8 | OVERFLOW STRUCTURE ON INTERCEPTOR SEWER (1928) | | R9-R17 | FIRST CONSTRUCTION OF TREATMENT PLANT (1929) | | | CLOSURES: LEVEE MANHOLE, INTERIOR DRAINAGE PUMP | | R18-R23 | LEVEE REPAIRS DUE TO FLOOD DAMAGE (1943) | | R24-R33 | CONSTRUCTION OF N. ENTRANCE RD. & EFFLUENT PONDS | | R34-R54 | CLOSURE: WATER LEVEL CONTROL STRUCTURE (1965)
EXPANSION OF FACILITY TO THE NORTH | | No 7 No 7 | CLOSURES: CONTROL CHAMBER 1, | | | EFFLUENT PUMP STATION (1974) | | R55-R56 | MODIFICATIONS TO SOUTH ENTRANCE ROAD (1974) | | R57-R65 | EMBANKMENT PROTECTION PLACED ON | | R66-R72 | EAST PORTION OF LEVEE (1974) MODIFICATIONS TO LEVEE (1975) | | R73-R75 | CLOSURE: SANITARY SEWER VALVE VAULT (1977) | | R76-R77 | MODIFICATIONS TO WEST PORTION OF LEVEE (1978) | | R78-R79 | CLOSURE: CONTROL CHAMBER 1 MODIFICATIONS (1988) | | R80 | CLOSURE: EFFLUENT PUMP STATION MODIFICATIONS (1994) | | | | # **PROJECT AREA** SITE LOCATION MAP STATE LOCATION MAP 2322 S. DARST STREET 062-050847 LICENSED PROFESSIONAL ENGINEER OF 6-29-2021 11/30/2021 RENEWAL DATE **RECORD DRAWINGS** MATTHEW A. ZICK 06/29/2021 11/30/2021 CRAWFORD, MURPHY & TILLY, INC. CONSULTING ENGINEERS 203 HARRISON ST PEORIA, IL 61602 PH (309) 637-1890 SPRINGFELD, IL = AURORA, IL = ST. LOUS, MO = CHICAGO, IL NDIANAPOLIS, IN = COLUMBUS, OH = PEORIA, IL = EDWARDSVILLE | MARK | DATE | DESCRIPTION | |---------------|------|------------------------------------| | | | <u> </u> | | PROJECT NO: | | 19005801-00 | | CAD DWG FILE: | | : A2 - PROPOSED LEVEE IMPROVEMENTS | | DESIGNED BY: | | KEY MAP.DWG | | DDAMAI DV: | | AND |